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Abstract In this paper, the notion of gap functions is extended from scalar case to
vector one. Then, gap functions and generalized functions for several kinds of vector
equilibrium problems are shown. As an application, the dual problem of a class of
optimization problems with a system of vector equilibrium constraints (in short, OP)
is established, the concavity of the dual function, the weak duality of (OP) and the
saddle point sufficient condition are derived by using generalized gap functions.
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1 Introduction

Recently, the vector equilibrium problem (in short, VEP) with fixed or moving cones
in abstract spaces has been studied intensively by many authors (see, for example,
[1–4,6,8,10,11,13,14,17,19,20,22,28,29] and the references therein). (VEP) contains
as special cases, for instance, vector variational inequality and vector complementarity
problems, as well as vector optimization problems (see [5,8,12,16,17,19,21,25,30]).
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The concept of a gap function was first introduced for the study of a convex opti-
mization problem. The meaning of “gap” is interpreted as the difference between
the cost function and the restricted Wolfe dual. The concept of gap functions was
then applied to variational inequality problems. As is well known, gap functions play
a crucial role in transforming a variational inequality problem into an optimization
problem [18,24]. Thus, powerful optimization solution methods and algorithms can
be applied for finding solutions of variational inequalities. In [7], Chen, Goh and Yang
extended the theory of gap functions for scalar variational inequality problems to the
case of vector variational inequality problems. In 2002, Yang and Yao [33] introduced
gap functions for vector variational inequalities with point-to-set mappings. In 2003,
the gap function approach was extended to the study for scalar equilibrium problem
(in short, EP) by Mastroeni [31]. Some related works, we refer to [26,27,32]. By virtue
of the nonlinear scalarization function introduced by Chen, Yang and Yu [10], the gap
function for a system of equilibrium problems (in short, SVEP) was introduced by
Huang, Li and Yao [23] and the necessary and sufficient conditions for (SVEP) were
established.

Inspired and motivated by above research works, in this paper, we extend the
notion of gap functions from scalar case to vector one. Then, we show gap functions
and generalized functions for several kinds of vector equilibrium problems. As an
application, we establish the dual problem of a class of optimization problems with
a system of vector equilibrium constraints (in short, OP), derive the concavity of the
dual function, the weak duality of (OP) and the saddle point sufficient condition by
using generalized gap functions under certain conditions.

2 Preliminaries

Throughout this paper, without other specifications, let I = {1, 2, . . . , n} be the index
set, and for each i ∈ I, let Xi and Yi be locally convex Hausdorff spaces. Consider
a family of nonempty closed convex subsets {Ki}i∈I with Ki in Xi. We denote by
X = ∏

i∈I Xi, Y = ∏
i∈I Yi and K = ∏

i∈I Ki. For each i ∈ I, let Ci : K → 2Yi be a
point-to-set mapping such that, for any x ∈ K, Ci(x) is a pointed, closed and convex
cone in Yi with nonempty interior intCi(x). For each i ∈ I, let ei : K → Yi be a vector-
valued mapping, and for any x ∈ K, ei(x) ∈ intCi(x). For each i ∈ I, let fi : K×Ki → Yi
be a bifunction. We consider the following system of vector equilibrium problems (in
short, SVEP) which is to find x∗ ∈ K such that for each i ∈ I,

(SVEP) fi(x∗, yi) �∈ −intCi(x∗), ∀yi ∈ Ki.

In the case that I is a countable ( or an uncountable) index set, (SVEP) has been
studied by Ansari, Chan and Yang [1], Huang, Li and Yao [23].

If the index set I is a singleton, then (SVEP) collapses to the following generalized
vector equilibrium problems (in short, (GVEP)1): finding x∗ ∈ K such that

(GVEP)1 f (x∗, y) �∈ −intC(x∗), ∀y ∈ K,

where f : K × K → Y is a bifunction, C : K → 2Y is a point-to-set mapping such
that, for any x ∈ K, C(x) is a pointed, closed and convex cone in Y with nonemp-
ty interior intC(x), and e : K → Y is a vector-valued mapping such that, for any
x ∈ K, e(x) ∈ intC(x).
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If the index set I is a singleton, Y = Rn and C(x) = Rn+ = {x = (x1, . . . , xn)T :
xl ≥ 0, l = 1, . . . , n} for all x ∈ K, where the superscript T denotes the transpose, then
(GVEP)1 reduces to the following generalized vector equilibrium problems (in short,
GVEP): finding x∗ ∈ K such that

(GVEP) f (x∗, y) �∈ −intRn+, ∀y ∈ K,

or equivalently,

(GVEP) ∀y ∈ K, ∃ly ∈ I, such that fly(x
∗, y) ≥ 0,

where fly(x
∗, y) denotes the lyth component of f (x∗, y).

Let f : K × K → Rn be a bifunction, we also consider the following vector equilib-
rium problems (in short, VEP): finding x∗ ∈ K such that

(VEP) f (x∗, y) ∈ Rn+, ∀y ∈ K,

or equivalently,

(VEP) ∀l ∈ I such that fl(x
∗, y) ≥ 0, ∀y ∈ K,

where fl(x∗, y) denotes the lth component of f (x∗, y).
If the index set I is a singleton, Y = R and C(x) = R+ = [0, +∞) for all x ∈ K, then

(SVEP) reduces to the classical equilibrium problems (in short, EP): finding x∗ ∈ K
such that

(EP) f (x∗, y) ≥ 0, ∀y ∈ K.

We denote by ES, EG1
, EG, E0 and E the solution sets of (SVEP), (GVEP)1,

(GVEP), (VEP) and (EP), respectively. It is clear that E0 ⊆ EG.

Definition 2.1 A function p : K → R is said to be a gap function for (SVEP) (or
(GVEP)1, (GVEP), (VEP), (EP)) if it satisfies the following properties:

(i) p(x) ≤ 0 for all x ∈ K;
(ii) p(x∗) = 0 if and only if x∗ ∈ ES (or EG1

, EG, E0, E).

In [7], Chen, Goh and Yang defined and derived some point-to-set mappings as
gap functions for vector variational inequalities. Now, we define vector functions as
gap functions as follows:

Definition 2.2 A function q : K → Rn is said to be a generalized gap function for
(SVEP) (or (VEP)) if it satisfies the following properties:

(i) q(x) ∈ −Rn+ for all x ∈ K;
(ii) q(x∗) = 0 if and only if x∗ ∈ ES(or E0).

In 1990, Gerth and Weidner first derived the nonconvex separation theorems for
any arbitrary set and any not necessarily convex set in a topological vector space. The
following nonlinear scalarizing function derived by Chen and Yang [9], Chen, Yang
and Yu [10] is a generalization of the scalarizing function introduced by Gerth and
Weidner [15].

Definition 2.3 [10] Let X and Y be two locally convex Hausdorff topological vec-
tor spaces, C : X → 2Y a point-to-set mapping such that for any x ∈ X, C(x) is a
proper, pointed, closed and convex cone in Y with intC(x) �= ∅. Let e : X → Y be a
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vector-valued mapping, and for any x ∈ X, e(x) ∈ intC(x). The nonlinear scalarization
function ξe : X × Y → R is defined as follows:

ξe(x, y)
def= inf{λ ∈ R : y ∈ λe(x) − C(x)}, ∀(x, y) ∈ X × Y.

If e(x) ≡ k0 for all x ∈ X, then the nonlinear scalarization function ξe reduces to the
nonlinear scalarization function ξk0 introduced by Chen and Yang [9]. Furthermore,
if e(x) ≡ k0 and C(x) ≡ C for all x ∈ X, then the nonlinear scalarization function ξe
collapses to the nonlinear scalarization function ξk0 introduced by Gerth and Weidner
[15].

The following results are very important properties of the nonlinear scalarization
function ξe.

Lemma 2.1 [10,15] Let X and Y be two locally convex Hausdorff topological vector
spaces, C : X → 2Y a point-to-set mapping such that for any x ∈ X, C(x) is a proper,
pointed, closed and convex cone in Y with intC(x) �= ∅. Let e : X → Y be a vector-val-
ued mapping, and for any x ∈ X, e(x) ∈ intC(x). For each λ ∈ R and (x, y) ∈ X × Y,
we have

(i) ξe(x, y) < λ ⇔ y ∈ λe(x) − intC(x);
(ii) ξe(x, y) ≤ λ ⇔ y ∈ λe(x) − C(x);

(iii) ξe(x, y) ≥ λ ⇔ y �∈ λe(x) − intC(x);
(iv) ξe(x, y) > λ ⇔ y �∈ λe(x) − C(x);
(v) ξe(x, y) = λ ⇔ y ∈ λe(x) − ∂C(x),

where ∂C(x) is topological boundary of C(x).

3 Gap functions and generalized gap functions for several kinds of vector
equilibrium problems

In this section, we give gap functions and the generalized gap functions for (SVEP),
(GVEP)1, (GVEP) and (VEP), and show the equivalence of solutions for them by
using gap functions and generalized gap functions.

3.1 Gap functions for (SVEP), (GVEP)1, (GVEP) and (VEP)

We first consider the gap functions for (SVEP), (GVEP)1, (GVEP) and (VEP).
In [23], Huang, Li and Yao proved the following theorem:

Theorem 3.1 [23] If for any x ∈ K and each i ∈ I, fi(x, xi) ∈ −∂Ci(x), where xi is the
ith component of x, then the function φ(x) is a gap function for (SVEP), where the
function φ : K → R is defined as follows:

φ(x) = inf
i∈I

{−φ0(x, i)}

and

φ0(x, i) = sup
yi∈Ki

{−ξei(x, fi(x, yi))}.

Moreover, ES = {x ∈ K : φ(x) = 0}.
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Corollary 3.1 Suppose that the index set I is a singleton, f : K ×K → Y is a bifunction,
C : K → 2Y is a point-to-set mapping such that, for any x ∈ K, C(x) is a pointed, closed
and convex cone in Y with nonempty interior intC(x), and e : K → Y is a vector-valued
mapping such that, for any x ∈ K, e(x) ∈ intC(x). If for any x ∈ K, f (x, x) ∈ −∂C(x),
then the function φ(x) is a gap function for (GVEP)1, where the function φ : K → R is
defined as follows:

φ(x) = − sup
y∈K

{−ξe(x, f (x, y))}.

In addition, EG1 = {x ∈ K : φ(x) = 0}.
Proof The proof is the same as in Theorem 3.1, and so we omit it.

From Corollary 3.1, we obtain the following conclusion. �

Corollary 3.2 Suppose that the index set I is a singleton, f : K×K → Rn is a bifunction,
C(x) = Rn+ = {x = (x1, . . . , xn)T : xl ≥ 0, l = 1, . . . , n} and e(x) = (1, . . . , 1)T for all
x ∈ K. If for any x ∈ K, f (x, x) ∈ −∂Rn+, then the function φ(x) is a gap function for
(GVEP), where the function φ : K → R is defined as follows:

φ(x) = − sup
y∈K

{−ξe(x, f (x, y))}.

Moreover, EG = {x ∈ K : φ(x) = 0}.
Remark that the gap function for (GVEP) in Corollary 3.2 is defined by means of the

nonlinear scalarization function ξe. Now, we derive another gap function for (GVEP)

without the help of the function ξe.

Theorem 3.2 Suppose that the index set I is a singleton, f : K×K → Rn is a bifunction,
and C(x) = Rn+ = {x = (x1, . . . , xn)T : xl ≥ 0, l = 1, . . . , n} for all x ∈ K. If for any
x ∈ K, f (x, x) ∈ −Rn+, then the function φ(x) is a gap function for (GVEP), where the
function φ : K → R is defined as follows:

φ(x) = − sup
y∈K

{φ0(x, y)}

and

φ0(x, y) = min
l∈I

{−fl(x, y)},

where fl(x, y) is the lth component of f (x, y). Furthermore, EG = {x ∈ K : φ(x) = 0}.
Proof We first show that φ(x) is a gap function for (GVEP). The proof consists of
two steps.

(i) Since for any x ∈ K, f (x, x) ∈ −Rn+,

fl(x, x) ≤ 0, l = 1, . . . , n.

It follows that

φ0(x, x) = min
l∈I

{−fl(x, x)} ≥ 0

and hence

φ(x) = − sup
y∈K

{φ0(x, y))} ≤ −φ0(x, x) ≤ 0, ∀x ∈ K.
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(ii) If φ(x∗) = 0, then x∗ ∈ K and

− sup
y∈K

{min
l∈I

{−fl(x
∗, y)}} = 0.

Then, for any y ∈ K,

min
l∈I

{−fl(x
∗, y)} ≤ 0,

which implies that there exists ly ∈ I such that −fly(x
∗, y) ≤ 0. Thus, f (x∗, y) �∈ −intRn+

for all y ∈ K and so x∗ ∈ EG.
Conversely, if x∗ ∈ EG, then x∗ ∈ K and

f (x∗, y) �∈ −intRn+, ∀y ∈ K.

Then, for any y ∈ K, there exists ly ∈ I such that fly(x
∗, y) ≥ 0. It follows that

φ0(x∗, y) = min
l∈I

{−fl(x
∗, y)} ≤ −fly(x

∗, y) ≤ 0

and so

φ(x∗) = − sup
y∈K

{φ0(x∗, y)} ≥ 0. (3.1)

Now, (i) and inequality (3.1) imply that φ(x∗) = 0.
It follows directly from the proof of (ii) that EG = {x ∈ K : φ(x) = 0} holds and

thus the proof is complete. �

Remark 3.1 Suppose that the index set I is a singleton, f : K×K → Rn is a bifunction,
C(x) = Rn+ = {x = (x1, . . . , xn)T : xl ≥ 0, l = 1, . . . , n} and e(x) = (1, . . . , 1)T for all
x ∈ K for all x ∈ K. If for any x ∈ K, f (x, x) ∈ −∂Rn+, then the gap function φ(x)

defined in Corollary 3.2 by means of the nonlinear scalarization function ξe is same as
one in Theorem 3.2 without the help of the function ξe. That is, for any x ∈ K,

− sup
y∈K

{min
l∈I

{−fl(x, y)}} = − sup
y∈K

{−ξe(x, f (x, y))}.

In fact, since

− sup
y∈K

{min
l∈I

{−fl(x, y)}} = − sup
y∈K

{− max
l∈I

fl(x, y)},

it suffices to show

max
l∈I

fl(x, y) = ξe(x, f (x, y)), ∀(x, y) ∈ K × K.

From the definition of ξe, one has, for any (x, y) ∈ K × K,

ξe(x, f (x, y)) = inf{λ ∈ R : f (x, y) ∈ λ(1, . . . , 1)T − Rn+}
= inf{λ ∈ R : (f1(x, y) − λ, f2(x, y) − λ, . . . , fn(x, y) − λ)T ∈ −Rn+}
= inf{λ ∈ R : fl(x, y) ≤ λ, ∀l = 1, 2, . . . , n}
= max

l∈I
fl(x, y),

which yields the desired conclusion.
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Theorem 3.3 Suppose that all conditions in Theorem 3.2 are satisfied. If for any x ∈ K,
f (x, x) ∈ −Rn+, then the function φ(x) is a gap function for (VEP), where the function
φ : K → R is defined as follows:

φ(x) = min
l∈I

{−φ0(x, l)}
and

φ0(x, l) = sup
y∈K

{−fl(x, y)},

where fl(x, y) is the lth component of f (x, y). In addition, E0 = {x ∈ K : φ(x) = 0}.
Proof The proof of φ(x) is a gap function for (VEP) consists of two steps.

(i) Since for any x ∈ K, f (x, x) ∈ −Rn+,

fl(x, x) ≤ 0, l = 1, 2, . . . , n,

and so

φ0(x, l) = sup
y∈K

{−fl(x, y)} ≥ −fl(x, x) ≥ 0, l = 1, 2, . . . , n.

Thus

φ(x) = min
l∈I

{−φ0(x, l)} ≤ 0, ∀x ∈ K.

(ii) If φ(x∗) = 0, then x∗ ∈ K and

min
l∈I

{− sup
y∈K

{−fl(x
∗, y)}} = 0.

Then, for each l ∈ I, we obtain − supy∈K{−fl(x∗, y)} ≥ 0, which implies that, for any
y ∈ K, −fl(x∗, y) ≤ 0. Thus, we have f (x∗, y) ∈ Rn+ for all y ∈ K. That is, x∗ ∈ E0.

Conversely, if x∗ ∈ E0, then x∗ ∈ K and

f (x∗, y) ∈ Rn+, ∀y ∈ K.

That is, for each l ∈ I, fl(x∗, y) ≥ 0 for all y ∈ K. Then,

φ0(x∗, l) = sup
y∈K

{−fl(x
∗, y)} ≤ 0

and it follows that

φ(x∗) = min
l∈I

{−φ0(x∗, l)} ≥ 0. (3.2)

Thus, both (i) and inequality (3.2) yield φ(x∗) = 0.
The relation E0 = {x ∈ K : φ(x) = 0} follows directly form the proof of (ii) and

thus the proof is complete.
From Theorem 3.3, we have the following result. �

Corollary 3.3 [31] Suppose that f : K × K → R is a bifunction and C(x) = R+ =
[0, +∞) for all x ∈ K. If for any x ∈ K, f (x, x) ≤ 0, then the function φ(x) is a gap
function for (EP), where the function φ : K → R is defined by

φ(x) = − sup
y∈K

{−f (x, y)}.

Moreover, E = {x ∈ K : φ(x) = 0}.
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3.2 Generalized gap functions for (SVEP) and (VEP)

Now, we derive generalized gap functions for (SVEP) and (VEP).

Theorem 3.4 If for any x ∈ K and each i ∈ I, fi(x, xi) ∈ −∂Ci(x), where xi is the ith
component of x, then the function ϕ(x) is a generalized gap function for (SVEP), where
the function ϕ : K → Rn is defined as follows:

ϕ(x) = (−ϕ1(x), . . . , −ϕn(x))T

and

ϕi(x) = sup
yi∈Ki

{−ξei(x, fi(x, yi))}, ∀i = 1, 2, . . . , n.

Moreover, ES = {x ∈ K : ϕ(x) = 0}.
Proof We first prove that the function ϕ(x) is a generalized gap function for (SVEP)
which consists of two steps.

(i) Since for any x ∈ K and each i ∈ I, fi(x, xi) ∈ −∂Ci(x), from Lemma 2.1 (v), one
has

ξei(x, fi(x, xi)) = 0.

It follows that

ϕi(x) = sup
yi∈Ki

{−ξei(x, fi(x, yi))} ≥ 0,

and so

ϕ(x) = (−ϕ1(x), . . . , −ϕn(x))T ∈ −Rn+, ∀x ∈ K.

(ii) If ϕ(x∗) = 0, then we obtain

(− sup
y1∈K1

{−ξe1(x
∗, f1(x

∗, y1))}, . . . , − sup
yn∈Kn

{−ξen(x
∗, fn(x∗, yn))})T = 0.

Then x∗ ∈ K and for each i ∈ I,

sup
yi∈Ki

{−ξei(x
∗, fi(x∗, yi))} = 0,

which implies that, for any yi ∈ Ki,

−ξei(x
∗, fi(x∗, yi)) ≤ 0.

From Lemma 2.1 (iii), we conclude fi(x∗, yi) �∈ −intCi(x∗) for all yi ∈ Ki. That is,
x∗ ∈ ES.

Conversely, if x∗ ∈ ES, then x∗ ∈ K and for each i ∈ I,

fi(x∗, yi) �∈ −intCi(x∗), ∀yi ∈ Ki.

By Lemma 2.1 (iii),

ξei(x
∗, fi(x∗, yi)) ≥ 0

for all yi ∈ Ki. Then,

ϕi(x∗) = sup
yi∈Ki

{−ξei(x
∗, fi(x∗, yi))} ≤ 0
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and hence

ϕ(x∗) = (−ϕ1(x
∗), . . . , −ϕn(x∗))T ∈ Rn+. (3.3)

Thus, (i) and (3.3) yield ϕ(x∗) = 0.
It is obvious that the proof of (ii) implies ES = {x ∈ K : ϕ(x) = 0}. This completes

the proof.
From the proof of Theorem 3.4, it is easy to see that the following conclusion holds.

�

Corollary 3.4 If for any x ∈ K and each i ∈ I, fi(x, xi) ∈ −∂Ci(x), where xi is the ith
component of x, then the function −ϕi(x) is a gap function for the ith component of
(SVEP) (in short,(SVEP)i) which concists of finding x∗ ∈ K such that

fi(x∗, yi) �∈ −intCi(x∗), ∀yi ∈ Ki,

where the function ϕi : K → Rn is defined in Theorem 3.4. Furthermore, ESi = {x ∈
K : ϕi(x) = 0}, where ESi denotes the solution set of (SVEP)i.

Theorem 3.5 Suppose that all assumptions in Theorem 3.3 are satisfied. If for any
x ∈ K, f (x, x) ∈ −Rn+, then the function ϕ(x) is a generalized gap function for (VEP),
where the function ϕ : K → Rn is defined as follows:

ϕ(x) = (−ϕ1(x), . . . , −ϕn(x))T

and

ϕl(x) = sup
y∈K

{−fl(x, y)}, ∀l = 1, 2, . . . , n,

where fl(x, y) is the lth component of f (x, y). Moreover, E0 = {x ∈ K : ϕ(x) = 0}.
Proof We first prove that the function ϕ(x) is a generalized gap function for (VEP)
which consists of the following two steps.

(i) Since for any x ∈ K, f (x, x) ∈ −Rn+, one has

fl(x, x) ≤ 0, l = 1, 2, . . . , n,

Then

ϕl(x) = sup
y∈K

{−fl(x, y)} ≥ 0, l = 1, 2, . . . , n,

and so

ϕ(x) = (−ϕ1(x), . . . , −ϕn(x))T ∈ −Rn+, ∀x ∈ K.

(ii) If ϕ(x∗) = 0, then

(− sup
y∈K

{−f1(x
∗, y)}, . . . , − sup

y∈K
{−fn(x∗, y)})T = 0.

It follows that, x∗ ∈ K and for each l ∈ I,

sup
y∈K

{−fl(x
∗, y)} = 0,

which yields that, for any y ∈ K, −fl(x∗, y) ≤ 0. Thus, we have f (x∗, y) ∈ Rn+ for all
y ∈ K, or equivalently, x∗ ∈ E0.



256 J Glob Optim (2007) 39:247–260

Conversely, if x∗ ∈ E0, then x∗ ∈ K and

f (x∗, y) ∈ Rn+, ∀y ∈ K.

It follows that for each l ∈ I, fl(x∗, y) ≥ 0 for all y ∈ K. Thus

ϕl(x
∗) = sup

y∈K
{−fl(x

∗, y)} ≤ 0

for all l ∈ I, which implies that

ϕ(x∗) = (−ϕ1(x
∗), . . . , −ϕn(x∗))T ∈ Rn+. (3.4)

Now, both (i) and (3.4) imply that ϕ(x∗) = 0.
From the proof of (ii), it is clear that E0 = {x ∈ K : ϕ(x) = 0} holds and thus the

proof is complete. �

4 Applications to optimization problems with a system of vector equilibrium
constraints

In this section, we consider a class of optimization problems with a system of vec-
tor equilibrium constraints (in short, OP). We first transform equivalently (OP) into
a class of optimization problems with equality constraints by using generalized gap
function of (SVEP) obtained in Sect. 3. Then, we give the dual problem of (OP),
prove the concavity of the dual function, weak duality of (OP) and the saddle point
sufficient condition under certain assumptions.

We consider (SVEP) in the case of Xi = Yi = R for all i ∈ I. It is clear that
X = ∏

i∈I Xi = Y = ∏
i∈I Yi = Rn. Assume that the following assumptions hold:

(i) for each i ∈ I and any x ∈ K, ξei(x, fi(x, xi)) = 0, where xi is the ith component
of x;

(ii) for each i ∈ I and any x ∈ K, the vector-valued function yi �→ fi(x, yi) is
Ci-convex;

(iii) for each i ∈ I and any yi ∈ Ki, the vector-valued function x �→ fi(x, yi) is
continuous;

(iv) for each i ∈ I, the point-to-set mapping Wi : K → 2Yi has closed graph in
K × Yi, where Wi(x) = Yi\(−intCi(x)), ∀x ∈ K;

(v) there exists a nonempty compact subset D ⊆ K and for each i ∈ I, there exists
a nonempty compact and convex subset Ei ⊆ Ki, such that ∀x ∈ K\D, ∃i ∈ I
and ∃yi ∈ Ei such that

ξei(x, fi(x, yi)) < 0.

Remark that from Lemma 2.1 (v), assumption (i) is equivalent to the condition that
for any x ∈ K and each i ∈ I, fi(x, xi) ∈ −∂Ci(x), where xi is the ith component of x.
Since assumptions (i)–(v) hold, ES is nonempty and compact (see Theorem 4.1 of
[23]), where ES = {x∗ ∈ K : for each i ∈ I : fi(x∗, yi) �∈ −intCi(x∗), ∀yi ∈ Ki}.

Let g : K → R be a continuous function. We consider the following optimization
problem with system of vector equilibrium constraints (in short, OP):

min
x∈ES

g(x),
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where ES is called the feasible set of (OP). We denote by EP the solutions set of (OP).
Obviously, EP ⊆ ES. Since g is continuous and ES is nonempty and compact, it is
clear that (OP) is solvable, or equivalently, EP �= ∅. From Theorem 3.4, we have that
ES = {x ∈ K : ϕ(x) = 0}, where the function ϕ : K → Rn is defined by

ϕ(x) = (−ϕ1(x), . . . , −ϕn(x))T

and

ϕi(x) = sup
yi∈Ki

{−ξei(x, fi(x, yi))}, i = 1, . . . , n,

where the superscript T denotes the transpose. Thus, (OP) can be equivalently rewrit-
ten as the following optimization problem with equality constraints:

min
x∈K

g(x)

subject to ϕi(x) = 0, i = 1, . . . , n.

Definition 4.1 The Lagrangian of (OP) is defined as

L(x, λ) = g(x) + λTϕ(x), ∀(x, λ) ∈ K × Rn,

where λ ∈ Rn is called the Lagrangian Multiplier of (OP).

Since

sup
λ∈Rn

L(x, λ) = sup
λ∈Rn

{g(x) + λTϕ(x)}

=
{

g(x), if ϕ(x) = 0
+∞, otherwise,

(OP) can be therefore restated in the form

min
x∈K

max
λ∈Rn

L(x, λ).

For λ ∈ Rn, define the function

d(λ) = min
x∈K

L(x, λ),

which is called the dual function. Then the dual problem (in short, DP) of (OP) is
defined to the following unconstrained optimization problem:

max
λ∈Rn

d(λ).

We denote by ED the solutions set of (DP). In order to derive the concavity of the
dual function, we further assume that

(vi) for each i ∈ I, ei : K → Yi is continuous, Ci : K → 2Yi and Hi : K → 2Yi are
upper semi-continuous, where Hi(x) = Yi\intCi(x) for all x ∈ K;

(v) for each i ∈ I and x ∈ K, the function yi �→ ξei(x, fi(x, yi)) is bounded from
above.
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Note that the pointed cone Ci(x) implies that the properness (i.e., Ci(x) �= Yi).
Thus, we have that for each i ∈ I, (u, v) �→ ξei(u, v) is continuous on K × Yi (see
Theorem 2.1 of [10]). Consider assumption (iii) and the definition of ϕi, it follows that
ϕi is continuous for all i ∈ I, so is ϕ. According the continuity of ϕ, we obtain the
concavity of the dual function d, which is independent of the convexity of g and ϕ.

Theorem 4.1 (Concavity of the dual function) If assumptions (i)–(vi) hold and K is
compact, then the dual function d is concave.

Proof Remark that g and ϕ are continuous and K is compact. Let t ∈ [0, 1], then for
any λ1, λ2 ∈ Rn,

d(tλ1 + (1 − t)λ2) = min
x∈K

L(x, tλ1 + (1 − t)λ2)

= min
x∈K

{g(x) + (tλ1 + (1 − t)λ2)
Tϕ(x)}

= min
x∈K

{t[g(x) + (λ1)
Tϕ(x)] + (1 − t)[g(x) + (λ2)

Tϕ(x)]}
≥ t min

x∈K
{g(x) + (λ1)

Tϕ(x)} + (1 − t) min
x∈K

{g(x) + (λ2)
Tϕ(x)}

= t min
x∈K

L(x, λ1) + (1 − t) min
x∈K

L(x, λ2)

= td(λ1) + (1 − t)d(λ2).

This proof is complete. �

Theorem 4.2 (Weak Duality) If x∗ ∈ EP, then for any feasible point x ∈ ES and λ ∈ Rn,

d(λ) ≤ d(λ∗) ≤ g(x∗) ≤ g(x),

for all λ∗ ∈ ED.

Proof Since ϕ(x∗) = 0, it follows that for any λ ∈ Rn, λTϕ(x∗) = 0. Consider the
definition of d, one has d(λ) ≤ g(x∗)+λTϕ(x∗) for all λ ∈ Rn. Thus for any all feasible
point x ∈ ES, d(λ) ≤ maxλ∈Rn d(λ) = d(λ∗) ≤ g(x∗) = minx∈EG g(x) ≤ g(x), for all
λ∗ ∈ ED. This proof is complete.

As is well know, if d(λ∗) < g(x∗), then the difference g(x∗) − d(λ∗) is called the
“duality gap”. The following conclusion is an immediate consequence of Theorem 4.2.

�

Corollary 4.1 If x∗ ∈ ES and λ∗ ∈ Rn such that

d(λ∗) = g(x∗),

then x∗ ∈ EP and λ∗ ∈ ED.

Definition 4.2 (x∗, λ∗) is called a saddle point of the Lagrangian L if, x∗ ∈ K and
λ∗ ∈ Rn such that

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀x ∈ K, λ ∈ Rn. (4.1)

Based on the Lagrangian of (OP), we have the following conclusion.

Theorem 4.3 (Saddle point sufficient condition) If (x∗, λ∗) is a saddle point of the
Lagrangian L, then x∗ ∈ EP.
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Proof Since (x∗, λ∗) is a Saddle point of the Lagrangian L, the first inequality of (4.1)
implies that

(λ − λ∗)Tϕ(x∗) ≤ 0, ∀λ ∈ Rn. (4.2)

We conclude that ϕj(x∗) = 0 for all i = 1, . . . , n. Suppose that there exists j0 such that
ϕj0(x

∗) �= 0. Then, we choose λj0 such that λj0 > λ∗
j0

, if −ϕj0(x
∗) > 0, and λj0 < λ∗

j0
, if

−ϕj0(x
∗) < 0. Thus, λ = (λ∗

1, . . . , λ∗
j0−1, λj0 , λ∗

j0+1 . . . , λ∗
n)T ∈ Rn leads to a contradiction

with (4.2). It follows that x∗ ∈ K is feasible, that is, x∗ ∈ ES = {x ∈ K : ϕ(x) = 0}. The
second inequality of (4.1) and the feasibility of x∗ imply that

g(x∗) ≤ g(x) + (λ∗)T(ϕ(x) − ϕ(x∗)) = g(x) + (λ∗)Tϕ(x) = g(x)

for all x ∈ ES = {x ∈ K : ϕ(x) = 0}, which implies that x∗ ∈ EP. The proof is complete.
From Corollary 4.1 and Theorem 4.3, we obtain the following conclusion. �

Corollary 4.2 If (x∗, λ∗) is a saddle point of the Lagrangian L such that

d(λ∗) = g(x∗),

then x∗ ∈ EP and λ∗ ∈ ED.
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